An anti-Hausdorff Fréchet space in which convergent sequences have unique limits
نویسندگان
چکیده
منابع مشابه
m-Ary Hypervector Space: Convergent Sequences and Bundle Subsets.
In this paper, we have generalized the definition of vector space by considering the group as a canonical $m$-ary hypergroup, the field as a krasner $(m,n)$-hyperfield and considering the multiplication structure of a vector by a scalar as hyperstructure. Also we will be consider a normed $m$-ary hypervector space and introduce the concept of convergence of sequence on $m$-ary hypernormed space...
متن کاملStrongly almost ideal convergent sequences in a locally convex space defined by Musielak-Orlicz function
In this article, we introduce a new class of ideal convergent sequence spaces using an infinite matrix, Musielak-Orlicz function and a new generalized difference matrix in locally convex spaces. We investigate some linear topological structures and algebraic properties of these spaces. We also give some relations related to these sequence spaces.
متن کاملLimits of local-global convergent graph sequences
The colored neighborhood metric for sparse graphs was introduced by Bollobás and Riordan [8]. The corresponding convergence notion refines a convergence notion introduced by Benjamini and Schramm [6]. We prove that even in this refined sense, the limit of a convergent graph sequence (with uniformly bounded degree) can be represented by a graphing. We study various topics related to this converg...
متن کاملConvergent Sequences in Complex Unitary Space
For simplicity, we adopt the following convention: X is a complex unitary space, x, y, w, g, g1, g2 are points of X, z is a Complex, q, r, M are real numbers, s1, s2, s3, s4 are sequences of X, k, n, m are natural numbers, and N1 is an increasing sequence of naturals. Let us consider X, s1. We say that s1 is convergent if and only if: (Def. 1) There exists g such that for every r such that r > ...
متن کاملHEREDITARILY INDECOMPOSABLE HAUSDORFF CONTINUA HAVE UNIQUE HYPERSPACES 2XAND Cn(X)
Let X be a Hausdorff continuum (a compact connected Hausdorff space). Let 2X (respectively, Cn(X)) denote the hyperspace of nonempty closed subsets of X (respectively, nonempty closed subsets of X with at most n components), with the Vietoris topology. We prove that if X is hereditarily indecomposable, Y is a Hausdorff continuum and 2X (respectively Cn(X)) is homeomorphic to 2Y (respectively, C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 1993
ISSN: 0166-8641
DOI: 10.1016/0166-8641(93)90147-6